Mathsarc Education

A learning place to fulfill your dream of success!

MATHEMATICS

Mathsarc Education

DIFFERENTIABILITY

CLASS WORK - UNDERSTANDING

1. If $f'(a^{+}) = \lim_{x \to a^{+}} \frac{f(x) - f(a)}{x - a} \& f'(a^{-}) = \lim_{x \to a^{-}} \frac{f(x) - f(a)}{x - a}$ then find $f'(a^{+}) \& f'(a^{-})$ for the following functions and comment about existence of f'(a). (i) $f(x) = 2x^{2} - x + 3$, where a = 2 (ii) $f(x) = |\ln(x)|$, where a = 1 (iii) $f(x) = e^{-|x|}$, where a = 0 (iv) $f(x) = \cos x$, where a = 0(v) $f(x) = \begin{cases} x^{2} + 1, & x \ge 0 \\ -x^{2}, & x < 0 \end{cases}$, where a = 0 (vi) $f(x) = \begin{cases} (x - e) \cdot 2^{-2/(e - x)} & x \ne e \\ 0, & x = e \end{cases}$, where a = e

2. The slope of the curve y = f(x) at the point $P(x_o, f(x_o))$ is the number $m = \lim_{h \to 0} \frac{f(x_o + h) - f(x_o)}{h} = Exist$.

The tangent line to the curve at P is the line through P with given slope m.

Now, answer the following question based on above theory.

- (i) Find the slope of the curve y = 1/x at any point $x = a \neq 0$. What is the slope at the point x = -1?
- (ii) Where does the slope equals -1/4?
- (iii) Write equation of tangent at P(2, 1/2).
- 3. Consider $\nabla y = \frac{\Delta y}{\Delta x}$ or gradient $= \frac{y_2 y_1}{x_2 x_1}$, where y = f(x). Select the correct options.

(A) $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \frac{dy}{dx}$.

- (B) $f'(x_1) = \lim_{x \to x_1} \frac{y y_1}{x x_1}$ and point P(x₁, y₁) lies on the curve y = f(x).
- (C) Greater gradient implies greater rate of change.

(D) Equation of tangent at point P(x₁, y₁) lies on the curve y = f(x) is: $y - y_1 = \frac{dy}{dx}\Big|_{dtP} (x - x_1)$.

- 4. Explain the geometrical meaning of f'(a) and discuss its different aspect of differentiability of f(x) at x = a.
- 5. Differentiate the following functions using first principal.
 - (i) $f(x) = \frac{x}{x-1}$ (ii) $f(x) = \sqrt{x}$ for x > 0. (iii) $f(x) = x^n$, $n \in Q$. (iv) $f(x) = \ln(1 + x)$ (v) $\tan(\sqrt{x})$ (vi) $f(x) = \tan^{-1}(x)$ (vii) $f(x) = e^{\sqrt{3x+2}}$ (viii) $f(x) = \ln(3x + 2)$, also find f'(0).

- 6. When does f(x) said to be non-differentiable at x = a (finite). Select the correct options and Justify using an appropriate Example?
 - (A) If $f'(a^+) \neq f'(a^-)$ (both finite).(B) If $f'(a^+) = \infty$ & $f(a^-) = -\infty$ or $f'(a^+) = -\infty$ & $f(a^-) = \infty$.(C) If f(x) is discontinuous at x = a.(D) f(x) has vertical tangent at x=a. Ex $f(x)=x^{1/3}$ at x=0
- 7. (i) Let f(x) be a function satisfying $|f(x)| \le x^2$ for $-1 \le x \le 1$. Show that f is differentiable at x = 0 and find f'(0).

(ii) Show that
$$f(x) = \begin{cases} x^2 \sin(\frac{1}{x}), & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 is differentiable at x = 0 and find f'(0).

- 8. Prove that differentiability of f(x) at x = a implies continuity at x = a but converse is not true.
- 9. Explain the differentiability of f(x) in $x \in (a, b)$ or $x \in [a, b]$ and check the differentiability of $f(x) = \begin{cases} |1-4x^2|, & 0 \le x < 1\\ [x^2-2x], & 1 \le x \le 2 \end{cases}$ in $x \in (0, 2)$. Where [.] = GIF & |.| = Modulus function.

10. If
$$f(x) = \begin{cases} ax+b, & x \le -1 \\ ax^3+x+2b, & x > -1 \end{cases}$$
 is differentiable for all $x \in \mathbb{R}$. Find 'a' & 'b'.

11. If
$$f(x) = \begin{cases} x^m \cdot \sin\left(\frac{1}{x}\right) & x \neq 0 \\ 0 & x = 0 \end{cases}$$
 is continuous but not differentiable at x = 0, then find m.

12. If
$$f(x) = \begin{cases} \sqrt{4x^2 - 12x + 9 \cdot \{x\}}, & x \ge 1\\ \cos\left(\frac{\pi(|x| - \{x\})}{2}\right), & x < 1 \end{cases}$$
 then check the differentiability in [-1, 2].

- 13. Prove that $f'(x) = u(x) \cdot v'(x) + u'(x) \cdot v(x)$ where $f(x) = u(x) \cdot v(x)$.
- 14. Let f(x) = 15 |x 10|; $x \in \mathbb{R}$. Then the set of all values of x, at which the function, g(x) = f(f(x)) is not differentiable, is:
 - (A) $\{5, 10, 15\}$ (B) $\{10, 15\}$ (C) $\{5, 10, 15, 20\}$ (D) $\{10\}$

15. Let $S = \{t \in R: f(x) = |x - \pi| (e^{|x|} - 1) \sin |x| \text{ is not differentiable at } t\}$. Then the set S is equal to (A) $\{0\}$ (B) $\{\pi\}$ (C) $\{0, \pi\}$ (D) \emptyset (an Empty set)

16. For $x \in R$, $f(x) = |\log 2 - \sin x|$ and g(x) = f(f(x)), then:(A) $g'(0) = -\cos(\log 2)$ (B) g is differentiable at x = 0 and $g'(0) = -\sin(\log 2)$.(C) g is not differentiable at x = 0(D) $g'(0) = \cos(\log 2)$

17. If the function $g(x) = \begin{cases} k\sqrt{x+1}, & 0 \le x \le 3 \\ mx+2, & 3 < x \le 5 \end{cases}$ is differentiable, then the value of k + m is (A) 10/3 (B) 4 (C) 2 (D) 16/5

18. Let f:R→R and g:R→R be respectively given by f(x) = |x| + 1 and $g(x) = x^2 + 1$. Define h:R→R by $h(x) = \begin{cases} \max\{f(x), g(x)\} & \text{if } x \le 0 \\ \min\{f(x), g(x)\} & \text{if } x > 0 \end{cases}$. The number of points at which h(x) is not differentiable is ______.

19. If
$$|c| \le \frac{1}{2}$$
 and $f(x)$ is a differentiable function at $x = 0$ given by $f(x) = \begin{cases} b \sin^{-1} \left(\frac{c+x}{2}\right), & -\frac{1}{2} < x < 0 \\ 1/2, & x = 0 \\ \frac{e^{ax/2} - 1}{x}, & 0 < x < \frac{1}{2} \end{cases}$

Find the value of 'a' and prove that $64 b^2 = 4 - c^2$.

20. The left hand derivative of $f(x) = [x]\sin(\pi x)$ at x = k, k an integer, is (A) $(-1)^{k} (k - 1)\pi$ (B) $(-1)^{k-1}(k - 1)\pi$ (C) $(-1)^{k} k\pi$ (D) $(-1)^{k-1} k\pi$

FUNCTIONAL RELATIONSHIP

- 1. Let f be a differentiable function satisfying $f\left(\frac{x}{y}\right) = f(x) f(y)$ for all x, y > 0. If f'(1) = 1 then find f(x).
- 2. A differentiable function satisfying the relation $f(x+y) = f(x) + f(y) + 2xy 1 \forall x, y \in \mathbb{R}$. If $f'(0) = \sqrt{3 + a a^2}$ find f(x) and prove that $f(x) > 0 \forall x \in \mathbb{R}$.
- 3. If $f(x + y) = f(x) \cdot f(y)$, $\forall x, y \in \mathbb{R}$ then prove that $f(kx) = f(x)^k$ for $\forall k, x \in \mathbb{R}$.
- 4. Let f:R \rightarrow (- π , π) be differentiable function such that f(x) + f(y) = $f\left(\frac{x+y}{1-xy}\right)$. If $f(1) = \frac{\pi}{2}$ and

$$\lim_{x \to 0} \frac{f(x)}{x} = 2 \text{ , find } f(x).$$

Visit Us: https://www.mathsarc.com

ANSWER KEY & SOLUTION

1.	(i) Exist, f'(2) = 7		(ii) DNE, f'(1+) = 1, f'(1-)	= - 1
	(iii) DNE, f'(0+) =	-1, f'(0-) = 1	(iv) Exist, $f'(0) = 0$	
	(v) DNE, $f'(0^+) = 0$	$0, f'(0) = \infty$	(vi) DNE, $f'(e^+) = \infty, f'(e^+)$	$(e^{-}) = 0$
2.	(i) - 1/a ² , - 1	(ii) a = ± 2	(iii)x + 4y - 4 = 0	
3.	А, В, С			
5.	(i) $f'(x) = -\frac{1}{(x-1)^2}$	$\overline{)}^2$	(ii) $f'(x) = \frac{1}{2\sqrt{x}}$	
	(iii) $f'(x) = n \cdot x^{n-1}$	L	(iv) $f'(x) = \frac{1}{1+x}$	
	(v) $f'(x) = \sec^2(x)$	\sqrt{x}) $\cdot \frac{1}{2\sqrt{x}}$	(vi) $f'(x) = \frac{1}{1+x^2}$	
	(vii) $f'(x) = e^{\sqrt{3x+2}}$	$7 \times \frac{1}{2\sqrt{3x+2}} \times 3$	(viii) $f'(x) = \frac{3}{3x+2}, f'(0)$	$)=\frac{3}{2}$
6.	A, B, C, D	7. (i) 0 (ii) 0	9. At x = $1/2$, 1	10. a = -1/2, b = 1
11.	$m\in (0,1]$	12. Non-differentiability	at x = 0, 1, 3/2, 2	14. A
15.	D	16. D	17. C	18. 3
19.	a = 1	20. A		
FUNCTIONAL RELATIONSHIP				
1.	$f(x) = \ln(x)$	2. $f(x) = x^2 + (\sqrt{3 + a - a})^2$	$(x^2)x+1$	3. $f(x) = e^{\lambda x}$
4.	$f(x) = 2 \tan^{-1} x$			