Mathsarc Education

A learning place to fulfill your dream of success!

DIFFERENTIABILITY

CLASS WORK - UNDERSTANDING

1. If $f^{\prime}\left(a^{+}\right)=\operatorname{Lim}_{x \rightarrow a^{+}} \frac{f(x)-f(a)}{x-a} \& f^{\prime}\left(a^{-}\right)=\operatorname{Lim}_{x \rightarrow a^{-}} \frac{f(x)-f(a)}{x-a}$ then find $f^{\prime}\left(a^{+}\right) \& f^{\prime}\left(a^{-}\right)$for the following functions and comment about existence of $f^{\prime}(a)$.
(i) $f(x)=2 x^{2}-x+3$, where $a=2$
(ii) $\mathrm{f}(\mathrm{x})=|\ln (\mathrm{x})|$, where $\mathrm{a}=1$
(iii) $f(x)=e-|x|$, where $a=0$
(iv) $\mathrm{f}(\mathrm{x})=\cos \mathrm{x}$, where $\mathrm{a}=0$
(v) $f(x)=\left\{\begin{array}{cc}x^{2}+1, & x \geq 0 \\ -x^{2}, & x<0\end{array}\right.$, where $\mathrm{a}=0$
(vi) $f(x)=\left\{\begin{array}{cl}(x-e) \cdot 2^{-2 /(e-x)} & x \neq e \\ 0, & x=e\end{array}\right.$, where $\mathrm{a}=\mathrm{e}$
2. The slope of the curve $\mathrm{y}=\mathrm{f}(\mathrm{x})$ at the point $\mathrm{P}\left(\mathrm{x}_{0}, \mathrm{f}\left(\mathrm{x}_{0}\right)\right)$ is the number $m=\operatorname{Lim}_{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}=$ Exist. The tangent line to the curve at P is the line through P with given slope m .
Now, answer the following question based on above theory.
(i) Find the slope of the curve $y=1 / x$ at any point $x=a \neq 0$. What is the slope at the point $x=-1$?
(ii) Where does the slope equals $-1 / 4$?
(iii) Write equation of tangent at $\mathrm{P}(2,1 / 2)$.
3. Consider $\nabla y=\frac{\Delta y}{\Delta x}$ or gradient $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$, where $y=f(x)$. Select the correct options.
(A) $\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\frac{d y}{d x}$.
(B) $f^{\prime}\left(x_{1}\right)=\lim _{x \rightarrow x_{1}} \frac{y-y_{1}}{x-x_{1}}$ and point $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ lies on the curve $\mathrm{y}=\mathrm{f}(\mathrm{x})$.
(C) Greater gradient implies greater rate of change.
(D) Equation of tangent at point $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ lies on the curve $\mathrm{y}=\mathrm{f}(\mathrm{x})$ is: $y-y_{1}=\left.\frac{d y}{d x}\right|_{a t P}\left(x-x_{1}\right)$.
4. Explain the geometrical meaning of $f^{\prime}(a)$ and discuss its different aspect of differentiability of $f(x)$ at x = a .
5. Differentiate the following functions using first principal.
(i) $f(x)=\frac{x}{x-1}$
(ii) $f(x)=\sqrt{x}$ for $x>0$.
(iii) $f(x)=x^{n}, n \in Q$.
(iv) $f(x)=\ln (1+x)$
(v) $\tan (\sqrt{x})$
(vi) $\mathrm{f}(\mathrm{x})=\tan ^{-1}(\mathrm{x})$
(vii) $f(\mathrm{x})=e^{\sqrt{3 x+2}}$
(viii) $f(x)=\ln (3 x+2)$, also find $f^{\prime}(0)$.
6. When does $f(x)$ said to be non-differentiable at $x=a$ (finite). Select the correct options and Justify using an appropriate Example?
(A) If $f^{\prime}\left(a^{+}\right) \neq f^{\prime}\left(a^{-}\right)$(both finite).
(B) If $f^{\prime}\left(a^{+}\right)=\infty \& f\left(a^{-}\right)=-\infty$ or $f^{\prime}\left(a^{+}\right)=-\infty \& f\left(a^{-}\right)=\infty$.
(C) If $f(x)$ is discontinuous at $x=a$.
(D) $f(x)$ has vertical tangent at $x=a$. $\operatorname{Ex} f(x)=x^{1 / 3} a t x=0$
7. (i) Let $\mathrm{f}(\mathrm{x})$ be a function satisfying $|\mathrm{f}(\mathrm{x})| \leq \mathrm{x}^{2}$ for $-1 \leq \mathrm{x} \leq 1$. Show that f is differentiable at $\mathrm{x}=0$ and find $f^{\prime}(0)$.
(ii) Show that $f(x)=\left\{\begin{array}{cl}x^{2} \sin \left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x=0\end{array}\right.$ is differentiable at $\mathrm{x}=0$ and find $\mathrm{f}^{\prime}(0)$.
8. Prove that differentiability of $f(x)$ at $x=$ a implies continuity at $x=$ a but converse is not true.
9. Explain the differentiability of $f(x)$ in $x \in(a, b)$ or $x \in[a, b]$ and check the differentiability of $f(x)=\left\{\begin{array}{ll}\left|1-4 x^{2}\right|, & 0 \leq x<1 \\ {\left[x^{2}-2 x\right],} & 1 \leq x \leq 2\end{array}\right.$ in $\mathrm{x} \in(0,2)$. Where [.] = GIF \& $||=$. Modulus function.
10. If $f(x)=\left\{\begin{array}{cc}a x+b, & x \leq-1 \\ a x^{3}+x+2 b & x>-1\end{array}\right.$ is differentiable for all $\mathrm{x} \in \mathrm{R}$. Find ' $\mathrm{a}^{\prime} \&{ }^{\prime} \mathrm{b}$ '.
11. If $f(x)=\left\{\begin{array}{cl}x^{m} \cdot \sin \left(\frac{1}{x}\right) & x \neq 0 \\ 0 & x=0\end{array}\right.$ is continuous but not differentiable at $\mathrm{x}=0$, then find m .
12. If $f(x)=\left\{\begin{array}{ll}\sqrt{4 x^{2}-12 x+9} \cdot\{x\}, & x \geq 1 \\ \cos \left(\frac{\pi(|x|-\{x\})}{2}\right), & x<1\end{array}\right.$ then check the differentiability in [-1,2].
13. Prove that $f^{\prime}(x)=u(x) \cdot v^{\prime}(x)+u^{\prime}(x) \cdot v(x)$ where $f(x)=u(x) \cdot v(x)$.
14. Let $f(x)=15-|x-10| ; x \in R$. Then the set of all values of x, at which the function, $g(x)=f(f(x))$ is not differentiable, is:
(A) $\{5,10,15\}$
(B) $\{10,15\}$
(C) $\{5,10,15,20\}$
(D) $\{10\}$
15. Let $S=\left\{t \in R: f(x)=|x-\pi|\left(e^{|x|}-1\right) \sin |x|\right.$ is not differentiable at $\left.t\right\}$. Then the set S is equal to
(A) $\{0\}$
(B) $\{\pi\}$
(C) $\{0, \pi\}$
(D) \varnothing (an Empty set)
16. For $x \in R, f(x)=|\log 2-\sin x|$ and $g(x)=f(f(x))$, then:
(A) $g^{\prime}(0)=-\cos (\log 2)$
(B) g is differentiable at $\mathrm{x}=0$ and $\mathrm{g}^{\prime}(0)=-\sin (\log 2)$.
(C) g is not differentiable at $\mathrm{x}=0$
(D) $g^{\prime}(0)=\cos (\log 2)$
17. If the function $g(x)=\left\{\begin{array}{ll}k \sqrt{x+1}, & 0 \leq x \leq 3 \\ m x+2, & 3<x \leq 5\end{array}\right.$ is differentiable, then the value of $\mathrm{k}+\mathrm{m}$ is
(A) $10 / 3$
(B) 4
(C) 2
(D) $16 / 5$
18. Let $f: R \rightarrow R$ and $g: R \rightarrow R$ be respectively given by $f(x)=|x|+1$ and $g(x)=x^{2}+1$. Define $h: R \rightarrow R$ by $h(x)=\left\{\begin{array}{ll}\max \{f(x), g(x)\} & \text { if } x \leq 0 \\ \min \{f(x), g(x)\} & \text { if } x>0\end{array}\right.$. The number of points at which $\mathrm{h}(\mathrm{x})$ is not differentiable is \qquad
19. If $|\mathrm{c}| \leq \frac{1}{2}$ and $\mathrm{f}(\mathrm{x})$ is a differentiable function at $\mathrm{x}=0$ given by $f(x)=\left\{\begin{array}{cc}b \sin ^{-1}\left(\frac{c+x}{2}\right), & -\frac{1}{2}<x<0 \\ 1 / 2, & x=0 \\ \frac{e^{a x / 2}-1}{x}, & 0<x<\frac{1}{2}\end{array}\right.$. Find the value of ' a^{\prime} and prove that $64 b^{2}=4-c^{2}$.
20. The left hand derivative of $f(x)=[x] \sin (\pi x)$ at $x=k, k$ an integer, is
(A) $(-1)^{k}(k-1) \pi$
(B) $(-1)^{k-1}(\mathrm{k}-1) \pi$
(C) $(-1)^{\mathrm{k}} \mathrm{k} \pi$
(D) $(-1)^{\mathrm{k}-1} \mathrm{k} \pi$

FUNCTIONAL RELATIONSHIP

1. Let f be a differentiable function satisfying $f\left(\frac{x}{y}\right)=f(x)-f(y)$ for all $\mathrm{x}, \mathrm{y}>0$. If $\mathrm{f}^{\prime}(1)=1$ then find $\mathrm{f}(\mathrm{x})$.
2. A differentiable function satisfying the relation $f(x+y)=f(x)+f(y)+2 x y-1 \forall x, y \in R$. If $f^{\prime}(0)=\sqrt{3+a-a^{2}}$ find $\mathrm{f}(\mathrm{x})$ and prove that $\mathrm{f}(\mathrm{x})>0 \forall \mathrm{x} \in \mathrm{R}$.
3. If $f(x+y)=f(x) \cdot f(y), \forall x, y \in R$ then prove that $f(k x)=f(x)^{k}$ for $\forall k, x \in R$.
4. Let $\mathrm{f}: \mathrm{R} \rightarrow(-\pi, \pi)$ be differentiable function such that $\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y})=f\left(\frac{x+y}{1-x y}\right)$. If $f(1)=\frac{\pi}{2}$ and $\operatorname{Lim}_{x \rightarrow 0} \frac{f(x)}{x}=2$, find $\mathrm{f}(\mathrm{x})$.

Mathsare Education
A learning place to fulfill your dreams of success!

THANKS!
(-)
Keep smiling!

Visit Us: https:/ / www.mathsarc.com

ANSWER KEY \& SOLUTION

1. (i) Exist, $f^{\prime}(2)=7$
(ii) $\mathrm{DNE}, \mathrm{f}^{\prime}\left(1^{+}\right)=1, \mathrm{f}^{\prime}\left(1^{-}\right)=-1$
(iii) $D N E, f^{\prime}\left(0^{+}\right)=-1, f^{\prime}\left(0^{-}\right)=1$
(iv) Exist, $f^{\prime}(0)=0$
(v) DNE, $\mathrm{f}^{\prime}\left(0^{+}\right)=0, \mathrm{f}^{\prime}\left(0^{-}\right)=\infty$
(vi)DNE, $f^{\prime}\left(e^{+}\right)=\infty, f^{\prime}\left(e^{-}\right)=0$
2. (i) $-1 / a^{2},-1$
(ii) $\mathrm{a}= \pm 2$
(iii) $x+4 y-4=0$
3. $\mathrm{A}, \mathrm{B}, \mathrm{C}$
4. (i) $f^{\prime}(x)=-\frac{1}{(x-1)^{2}}$
(ii) $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$
(iii) $f^{\prime}(x)=n \cdot x^{n-1}$
(iv) $f^{\prime}(x)=\frac{1}{1+x}$
(v) $f^{\prime}(x)=\sec ^{2}(\sqrt{x}) \cdot \frac{1}{2 \sqrt{x}}$
(vi) $f^{\prime}(x)=\frac{1}{1+x^{2}}$
(vii) $f^{\prime}(x)=e^{\sqrt{3 x+2}} \times \frac{1}{2 \sqrt{3 x+2}} \times 3$
(viii) $f^{\prime}(x)=\frac{3}{3 x+2}, f^{\prime}(0)=\frac{3}{2}$
5. A, B, C, D
6. (i) 0 (ii) 0
7. At $x=1 / 2,1$
8. $a=-1 / 2, b=1$
9. $m \in(0,1]$
10. Non-differentiability at $x=0,1,3 / 2,2$
11. A
12. D
13. D
14. C
15. 3
16. $\mathrm{a}=1$
17. A

FUNCTIONAL RELATIONSHIP

1. $\mathrm{f}(\mathrm{x})=\ln (\mathrm{x})$
2. $f(x)=x^{2}+\left(\sqrt{3+a-a^{2}}\right) x+1$
3. $f(x)=e^{\lambda x}$
4. $f(x)=2 \tan ^{-1} x$
